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1 Introduction 
There has been a surge of interest in application involving gradiometer data recently, particularly 

gradiometer inverse problems.  One main areas of application surrounds gradiometer inverse problems 
focused on the European Space Agency's geodetic satellite mission, GOCE, and the gravitational 
gradient observations produced along its orbits.  This inverse problem is interested in producing 
spherical harmonic series representations of the Earth's gravitational potential (Freeden and Nutz 2011; 
Murböck et al. 2011; Novák and Tenzer 2013).  The second main focus area is on geophysical 
prospecting problems now feasible due to recent improvements in airborne and land gradiometers, such 
as those available from Lockheed Martin (Difrancesco 2007).  Additionally, emerging systems based on 
atom interferometry show promise at increasing instrument accuracy by an order of magnitude 
(McGuirk et al. 2002).  Also advances in algorithms aimed at modeling the gradients from local terrain 
and improving the likelihood of solving the local prospecting inverse problem are presented in Jekeli 
(2012) and Uzun and Jekeli (2015). 

The inverse source problem for the gradiometer tensor can be stated generally as follows:  given a 
gradiometer tensor field, extract information about the unknown object from which it was generated.  In 
practice, information about the unknown object is determined by identifying model parameters that 
generate gradiometer terms at the surveyed locations that are a close fit to the observations. This may be 
done by some estimation process like least squares or by trying many models (forward modeling) and 
keeping a “best fitting” one.  This model is then assumed to have something in common with the 
unknown object – location, mass, etc.  In Anderson (2011), it was shown that the gradiometer inverse 
problem reduces to the inverse problem of the potential.  Mass distributions of different mass, size, and 
location can produce very similar external potential fields.  Given this nature of the inverse problem, 
combined with instrument and environmental noise found in practical applications, the inverse solution 
is often wrong in fundamental ways.  That is, the inverse problem in the typical geophysical prospecting 
setting is usually considered unstable unless certain parameters are highly constrained.  In this paper, 
we present a new theory that specifies when an inverse solution model would have the same center of 
mass and total mass as the unknown. The total mass estimate includes estimating regions with both 
negative and positive density contrast.  In practical problems, this can help mitigate the pervasive 
instability problem that can produce false positives/negatives typically caused by not correctly 
determining the unknown's true center of mass location and total mass.  In addition, we derive a bound 
for the center of mass location and the total mass for strictly positive (or negative) bounded mass 
anomalies as a function of the supremum norm of the differential curvature. 

2 Mathematical Basis 
Let µ(y) be a mass distribution.  The potential function, U, generated by µ is defined by the 

Lebesgue integral 

 ∫ −
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(y)x GdμU  1 

where x is a point in space, y is a point in the mass distribution, and G is Newton's gravitational 
constant. 

The Hessian of the potential, H(U), is the tensor field whose components in rectangular coordinates 
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  The matrix in Eq. 2 is symmetric and satisfies Laplace’s equation.  Thus, H has only five 
independent terms and is a symmetric order 2 tensor field outside the support of the mass. 

The Partial Tensor gradiometer produces observables comprised of a combination of Hessian terms 
restricted to the horizontal plane, referred to as the in-line and cross gradients and defined as P= Uxx - 
Uyy and Q=2Uxy respectively.  There is also a Full Tensor gradiometer that supplies H as the observable, 
but our work focuses on the Partial Tensor system. 
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The Gradiometer Tensor generated by the mass anomaly µ, denoted GTµ, is the second-order tensor 
field in the xy-plane defined by 

 ).()( dxdydydxQdydydxdxPGT ⊗+⊗+⊗−⊗=µ  3 

Note, the gradiometer tensor is a symmetric and trace free (trace = 0) covariant tensor field of order 2 
on the xy-plane.  Thus, Eq. 3 can be written in matrix notation as 
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From the gradiometer tensor, the Differential Curvature, which is the scalar field DC in the plane, is 
readily calculated as 

 22 QPDC +=  5 

The points where the differential curvature is zero (i.e., P=Q=0) are exactly the singularity points of 
the gradiometer tensor.  It was shown in Anderson (2011) that the value of DC does not change with 
coordinate system rotation or translation, which makes the differential curvature a convenient 
observable in practical applications. 

A simple calculation shows that the eigenvalues of the gradiometer tensor at a given point are ±DC.  
Since the gradiometer tensor is symmetric at points where it is non-singular, the eigenvectors associated 
with +DC and –DC are mutually perpendicular. 

Define the Line Field Λ associated with GTµ as the line field of GTµ such that Λ(x,y) is the 
eigenspace of GTµ at the non-singular point (x,y) corresponding to the positive eigenvalue DC(x,y).  It is 
convenient to describe the line field by giving the angle α(x,y) that Λ(x,y) makes with the x-axis.  This 
angle is called the azimuthal angle of GTµ at (x,y).  The formula for the azimuthal angle of a 
gradiometer tensor in terms of its components is the following: 
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The arctangent in Eq. 6 is computed such that the signs of P and Q are accounted for, resulting in an 
angle that ranges from -π to +π.  Thus, α is on the range of [-π/2, +π/2]. 

The gradiometer tensor at any point is completely determined by knowing its eigenspace.  Thus, by 
knowing DC and α, we know the tensor itself.  The reason for using DC and α is that it allows one to 
better visualize the gradiometer tensor field. 

Now we apply index theory results to the gradiometer tensor line field, and show that the global index 
value of the line field can provide useful information about the unknown.  Background on index theory 
can be found in section 6.8 in Strogatz (1994) and is summarized below. 

If C is a closed curve in the plane which does not pass through any singularities, then the index of the 
curve, IC, with respect to the field is defined by the line integral 

 ∫=
C

C dI α
π2
1  7 

Geometrically, the index measures the net rotation of the line field as one goes around the closed 
curve.  The index of an isolated singularity is defined to be the index of any simple closed curve with 
the usual orientation that surrounds only that singularity.  Some properties of the index follow. 

1) For any closed curve C, IC is an integer multiple of 1/2 which is positive if the net rotation is 
counterclockwise and negative if clockwise. 

2) For a simple closed curve, C, with the usual orientation that surrounds only isolated singularities, IC 
is the sum of the indices of the singularities. 

The line field index is said to be a global index, IG, if the curve C surrounds all of the singularities of 
the field.   

Fig. 1 shows the line field for three point masses at (-2, -1, -2), (0, -2, -2), and (1,1,-2) with masses 
0.5, -1.5, and 2 respectively.  Areas in which P<0 are indicated with a blue 'x' and areas in which Q<0 
are indicated with a red 'o'.  Singularities occur at the intersections of the P=0 and Q=0 contours.  Each 
cycle through (P>0, Q>0), (P<0, Q>0), (P<0,Q<0), (P>0,Q<0) represents a 180 degree rotation of the 
line field and an index of 0.5.  Progressing through this sequence in the opposite direction indicates a 
negative singularity with an index of -0.5  Using the perimeter of the plot as the curve C produces two 
complete cycles and an index of 1, as predicted from Theorem 1 for this unbalanced system.  Note that, 
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if curve C were a circle with radius 10 centered at the origin, it would exclude the negative singularity 
at (0,-15) and indicate an index of 1.5.  This result illustrates the importance of ensuring C encloses all 
singularities when determining the global index. 

 

Fig. 1  Example line field for a system of 3 point masses 
A mass anomaly is the difference between the unknown object and an assumed model (the inverse 

solution).  For a given mass anomaly, the places not modelled correctly can be considered regions of 
positive or  negative mass.  Given the mass anomaly, µ, define 

 ∫∫ −−++ == ,, µµ dmdm  8 

as the positive and negative parts of the mass anomaly respectively.  Define the centers of mass with 
respect to the x-axis for the positive and negative parts of the mass anomaly as 

 ∫∫ −

−−

+

++
== .,

m
dx

m
dx µξµξ  9 

The centers of mass with respect to the y-axis for the positive and negative parts are similarly defined. 
 

Theorem 1:  (1) If m+ ≠ m-  then the global index, IG, equals 1.  (2) If  m+ = m- and 

),,(),(
−−++

≠ yxyx  then IG=3/2. 
Corollary 1.1:  If IG is not equal to one, then m+ = m-; and if IG is greater than or equal to 2, then 

).,(),(
−−++

= yxyx  
 
Theorem 1 and its corollary from Anderson (2011) state that if the gradients from the mass anomaly, 

(i.e., the residual gradients calculated from the difference of the gradients generated by the inverse 
solution model and the gradients produced by the unknown object) have a global index ≥ 2, then the 
inverse solution has the same total mass and center of mass in (x,y) as the unknown.  The conditions of 
Theorem 1 are illustrated in Fig. 2.  These plots show the line fields produced by a prism and a cylinder.  
Formulas used to calculate the gradients from a prism or cylinder can be found in Dransfield (1994) and 
Romaides et al. (2001) respectively.  In Fig. 2a, the cylinder mass is 1.3 times the prism mass and it is 
offset 3m along the x axis, resulting in an index of 1.  In Fig. 2b, the masses are the same, but the 
cylinder is still offset by 3m, resulting in an index of 1.5.  Finally, in Fig. 2c, both the masses and 
centers of mass of the two objects are the same, resulting in an index of 2.  The far left singularity in 
Fig. 2a has an index of -1/2, while all other singularities have an index of +1/2. This produces an IG=1 
in accordance with Theorem 1.  
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Fig. 2  Line fields for a cylinder and prism with (a) different mass and center of mass, (b) same 
mass and different center of mass, and (c) same mass and center of mass.  The circles represent 
singularity points where P=Q=0. 

Theorem 1 and Corollary 1.1 also apply for the vertical planes, P(x,z) and P(y,z).  So for certain 
applications where the anomaly is bounded by areas below both a horizontal and a vertical plane then 
we get the result for 3D center of mass. 

 
Corollary 1.2:  If IG > 3/2 in any two of the three planes P(x,y), P(x,z), P(y,z) then 

),,,(),,(
−−−+++

= zyxzyx  and m+ = m-. 
 
The following proposition from Anderson (2011) applied with Theorem 1 is used as rationale behind 

the new algorithm introduced in the next section.  For a positive integer N, define the 2N-gon mass 
anomaly by placing a mass with sign (-1)k at the point locations (cos(kπ/N), sin(kπ/N), -1); (k = 0 … 2N 
- 1).  This anomaly has positive and negative masses that balance and have the same center of mass. 

 
Proposition 1:  The global index of the 2N-gon mass anomaly is 1 + N/2. 
 
The line field for a 2N-gon with N=3 is shown in Fig. 3 and has an index of 2.5. 

 

Fig. 3  Line field of a 2N-gon for N=3 

3 Results 
3.1 Minimum Mass until Bifurcation (MMB) Algorithm 

Theorem 1 and its corollaries are extremely sensitive.  Very small differences in the mass magnitudes 
or center of mass locations result in IG<2.  In applied settings, we assume the unknown mass is large 
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relative to the noise.  Additionally, in the applied setting we do not have the luxury of exact 
observations or surveying great distances from the anomaly to get a global index.  However, even in 
low noise settings, this noise is sufficiently large that we expect a local index of 1. 

The pattern produced by the 2N-gon is very unlikely to occur naturally.  This makes it useful in 
conjunction with Theorem 1 for evaluating how accurately a model represents an unknown in terms of 
its total mass and center of mass.  We place a model prism at the hypothesized center of mass of the 
unknown mass and place a 2N-gon just below the measurement plane and above the center of mass of 
the model.  We then increase the mass on the vertices of the 2N-gon until its distinctive line field 
pattern emerges at a selected distance from the center of the 2N-gon.  We repeat this process while 
varying the position and dimensions of the model.  The model position and dimensions that require the 
minimum mass on the 2N-gon to produce its distinctive pattern represent the best fit to the unknown.  
We call this smallest 2N-gon mass required to produce the pattern the minimum mass until 
bifurcation (MMB). 

An example result is shown in Fig. 4.  The unknown is a rectangular prism 1.25m wide, 1.72m tall, 
and 15m long with a density of 2300kg/m3.  A model prism of  the same length and density is placed at 
the unknown's center of mass and its width and height are varied in 2cm increments.  The resulting 
surface represents the MMB required on the 2N-gon for each combination of model width and height.  
As can be seen from the plot, the overall MMB occurs when the model dimensions match those of the 
unknown.  The plot also reveals an arc of local minima.  These points represent combinations of width 
and height which produce models that are similar in total mass.   

 

 
Fig. 4  MMB for a model prism that is a near perfect match in dimensions to the unknown.  The 

large spike occurs at the correct prism dimensions. 

If no model perfectly matches the unknown, the MMB may occur anywhere along the arc.  For 
example, if the closest model prism width, length, and height have a 1cm error, result is illustrated in 
Fig. 5.  The largest spike occurs at width 1.32m and height 1.63m.   

 

 
Fig. 5  MMB when no model is a perfect fit.  The red dot represents the correct prism 

dimensions. 

The MMB approach can produce inverse solutions very different than those based on an inverse 
model solution found by minimizing the difference between model generated gradients and the 
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observed or measured gradients.  To demonstrate this, in the next example, the model with the 
combination of mass and location that minimizes σDC, the standard deviation of the difference between 
the DC from the point mass model and the observed DC of the unknown prism, is compared to MMB 
point mass solution to the same unknown.  This example illustrates the false positive issue often caused 
when the model has very different shape characteristics than the unknown.  In this case the model set 
can be considered from a family of homogenous balls (point masses), while the unknown is a prism. 

In the following figures, we compare inverse solutions for the unknown prism with a point mass and 
compare the results of the MMB algorithm and the best fit approach computed over increasing distances 
in the plane above the prism center.  We place the point mass at one possible location for the prism 
center of mass and compute σDC, the standard deviation of the difference between the DC from the point 
mass model and the observed DC of the unknown prism.  We then place a 2N-gon above the point mass 
and determine the MMB. This process is repeated for all combinations of mass and position and 
identify the combinations that minimize either σDC or MMB.  For both approaches, we evaluate the 
result over a series of concentric squares to examine how distance from the prism affects the results.  If 
the two methods were equivalent, they would produce the same result.  Both methods accurately 
determine the horizontal center of mass of the prism, but produce different results for its mass and 
depth.  For a 1.0x20x1.5m prism at a depth of 12m with density 2300kg/m3, Fig. 6 shows σDC as a 
function of the point mass/prism mass ratio and the horizontal range from the prism center of mass to 
the edge of the square area over which σDC is computed.  The minimum σDC at each range occurs at the 
largest mass ratio tested.  Thus, the inverse solution that most closely fits the observed data yields an 
incorrect mass of the unknown at all depths tested. 

 

Fig. 6  Best fitting solution using minimum σDC.  The minimum σDC at each range is at the 
maximum mass ratio tested and decreases as range increases. 

Fig. 7 shows the equivalent result when using the MMB approach.  As the range increases, the point 
mass that minimizes the MMB and the depth error remains consistent.  

 
Fig. 7  MMB as a function of range and mass ratio.  MMB at each range occurs when model 

mass equals prism mass  

Using this approach of evaluating the MMB computed along a series of increasingly larger concentric 
squares, it is possible to determine if the model mass is too large or too small.  Based on these 
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observations, we conclude that there is greater confidence in an MMB solution that is stable over 
increasingly larger ranges. 

The magnitude of the MMB can provide some insight into how well the model fits the unknown.  In 
Fig. 8, we replace the point mass used to generate Fig. 7 with a cylinder, which is a much closer fit to 
the prism.  The cylinder's length and density is set to be the same as the prism and its radius is varied.  
Note that the MMB is lower at the correct ratio with the cylinder than it was for the point mass. 

 
Fig. 8  MMB as a function of range and mass ratio for a cylinder modelling a prism 

In a theoretical environment with perfect observations, the MMB solution allows us to find the correct 
mass and horizontal center of mass of the unknown.  However, for practical problems it is very difficult 
to separate mass and depth.  Also, as was illustrated in Fig. 5, multiple inverse solutions of the same 
mass can be viable candidates for the best fit.   

3.2 Mass and Depth Bounds from DC Values 

In this section, we derive some fairly sharp bounds on total mass and the center of mass location 
(depth) of a strictly positive (or negative) unknown mass that are a function of the greatest magnitude of 
the observed DC values (its supremum norm).  Our approach takes into account gradient measurement 
error and mass modeling errors, assuming the unknown is contained within a bounding ball and is 
strictly positive or negative.  If the unknown's location cannot be bounded, then neither the center of 
mass nor the total mass can be bounded.   

Set a unit point mass at depth, D, on the z-axis below the (x, y) computational plane.  Then, 
symbolically, 

 .
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Now, find the maximum DC value in the (x, y) plane.  Since the DC surface plot is rotationally 
symmetric, we can further simplify Eq. 10 by setting y=0.  Then, using methods of Calculus, we take 
the derivative with respect to x, set the result equal to zero, and solve for the roots. 

 .0

)(

)23(3

2
7

22

22
0 =

+

+−
=

∂

∂ =

Dx

Dxx
x

DC y  11 

The roots of Eq. 11 are 3/2Dx ±= .  Applying these roots to Eq. 10 with y=0 and inserting the 
gravitational constant, G, and mass, m, we get a relationship between the supremum norm for DC and 
the point mass’s depth, D, and the mass, m, 

 .
525
318)2()(sup

3
22

sup D
GmUUUDC xyyyxx =+−=  12 

As an example of how this equation would be applied, consider the prism used for Fig. 7.  The 
||DC||sup for this object is 1.012x10-9s-2 and its mass is 6.9x104kg.  Using these values in Eq. 12 and 
solving for depth produces a result of 13.28m, a 10.6% error for an object quite different from a point 
mass. 
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For a quick and simple estimate of the effect of observational error on mass and depth error, we take 
the derivative of Eq. 12 with respect to mass and depth: 

 .
525
354

525
318

43sup dD
D
Gmdm

D
GDCd −==  13 

 To demonstrate, assume the observational error for DC for the preceding example is ±5x10-10s-2.  
Using the mass of 6.9x104kg and the computed depth of 13.28m, solving Eq. 13 for dm and dD 
indicates the mass may vary by ±3.14x104kg and the depth may vary by ±2.02m. 

 
Claim 1.  For any mass distribution generating an admissible potential in the (x, y) plane, p, outside 

ball, B; its ||DC||sup is bounded below by ||DC||sup generated of a uniform ring of unit mass in the 
equatorial plane of B parallel to p and bounded above by the ||DC||sup of two point masses, each with 
mass ½ located at opposite ends of the diameter of B (oriented between 0 and 12 degrees off the z-axis 
as D increases from 1 to infinity), ||DC||sup,ring ≤ ||DC||sup ≤ ||DC||sup,2 pts. 

 
Fig. 9 illustrates the results described in Claim 1.  As defined in Green (1952), an admissible potential 

is generated by a mass distribution within a unit ball where all the mass is contained in the ball, the total 
mass is 1, and the center of mass is at the center of the ball.  We solve Eq. 12 for D and compute the 
depth error for various mass distributions using their calculated DC.  The horizontal and vertical prisms 
used for this plot had a 0.04m2 square cross section and a length that placed their corners on the surface 
of the ball.  The errors converge toward 0 as depth increases and the mass distribution more resembles a 
point mass from the plane. 

 
Fig. 9  Depth estimation errors of various distributions of a unit mass in a unit ball   

Heuristically, we argue for the validity of the Claim 1 by citing Theorems 2 and 3 from Green (1952).   
 

Theorem 2:  The greatest distance from the center of mass to an equipotential surface occurs 
when the generating mass of the admissible potential is from two equal point masses located on 
the boundary of the unit ball where the two points are aligned with the furthest point on the 
surface. 
Theorem 3:  The closest point on an equipotential surface to the center of mass occurs when the 
generating mass is contained in an equatorial great circle with the closest point on the surface on 
a line through itself and the center of mass.   
 

Empirically, we see in Fig. 9 how the ring and two vertical point mass distributions bound a variety of 
arbitrary mass distributions contained in the unit ball.  Thus, even if a counter example is found and 
Claim 1 is proven false, it still has practical utility for our purposes.   

One can also define DC in any Tangent Plane (TP) to the equipotential surface normal to the Z axis, 
as the product of Uz and the difference between maximum and minimum curvatures in TP (k1 and k2 
respectively) (Slotnick 1932).  

 ).( 21 kkUDC z −=  14 

We also note that the ring is the least concentrated mass arrangement on the equatorial great circle 
producing relatively small Uz values.  The equations for the gradients of the ring are quite complicated 
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(Lass and Blitzer 1983), but we have found that a circular array of point masses provides a good 
approximation.  Note, the maximum DC of the ring and two vertical points configurations occur 
respectively farthest from and closest to the origin of the computational plane as illustrated in Fig. 10.  
These facts motivated the development of Claim 1. 

 

Fig. 10  DC for ring, 1 point, and 2 point masses rotated 10 deg from the vertical at 6m depth 

Fig. 11 shows the orientation of two point masses on the boundary that produce the largest ||DC||sup 
values as a function of depth.  The orientation approaches vertical as depth approaches 1 and appears to 
be asymptotic to approximately 12 degrees as depth approaches infinity.  In most practical applications, 
a vertical orientation provides an effective upper bound. 

 
Fig. 11  Angle from vertical at which two points produce the max ||DC||sup as a function of depth 
We now consider an example in which we compute bounds for the unknown’s mass and depth (center 

of mass) using Eq. 12 and Claim 1.  For this example, we use a prism 3x10x3m at a depth of 15m.  
Given an observed maximum DC of 2.16x10-9s-2, we assume the object that generated this DC can be 
enclosed in a ball with radius 5.5m. We position point masses at the top and bottom of the ball and use 
Eq. 12 to determine the mass and depth combinations that produce the same maximum DC.  We repeat 
this process using a ring at the ball's equator.  The result is a pair of curves that bound the depth and 
mass of the unknown, represented by the dashed lines in Fig. 12. 

Reading from Fig. 12, we can see the depth range attributed to the inverse solution with a mass 
determined from Fig. 8.  For an object with an MMB solution mass of 2.07x105kg, the depth to the 
center of mass, D, falls in the range -13.7m>D>-18.1m based on the mass distributions as discussed in 
Claim 1. 
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If we assume a maximum error signal of ±7x10-10s-2 and apply this to the DC value used to compute 
the depth, we get the bounds represented by the solid curves in Figure 12. 

 

 
Fig. 12  Relationship between depth and mass for two vertical points (lower right) and a ring 

(upper left) on a ball with radius 5.5m.  Dashed lines represent bounds with no measurement error.  
Solid lines represent bounds with 7x10-10s-2 measurement error. 

 
The depth bounds calculated above will be wider for shallower, less spherical mass distributions 

than those we calculated from Eq. 12.  The bounds will approach each other as depth increases 
with a fixed bounding ball as all distributions will then resemble a point mass from the 
observational plane. 

4 Conclusion 
In conclusion, we presented an algorithm (the MMB) that may be less susceptible to false positives in 

geophysical prospecting applications than those approaches relying solely on methods selecting inverse 
solution models that most closely fit the observed gradient data.  This is true since the MMB algorithm 
produces solutions that have the same horizontal center of mass as the unknown and that ensure the 
anomaly (difference between inverse solution mass and unknown mass) has approximately the same 
amounts of positive and negative mass.  Additionally, we presented tools for bounding possible 
locations of the unknown center of mass and total mass for strictly positive (or negative) mass.  These 
bounds alert us to the condition when the size of the unknown mass may be small in relation to the 
noise in the particular inverse problem, increasing the danger of an ill-posed problem and increasing the 
likelihood of false positives or negatives.  

While this analysis assumed a dense, regularly spaced array of observations, future work will examine 
the application of the approaches presented here to sparse observations sets.   
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